On best proximity points for multivalued cyclic $F$-contraction mappings
Authors
Abstract:
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
similar resources
on best proximity points for multivalued cyclic $f$-contraction mappings
in this paper, we establish and prove the existence of best proximity points for multivalued cyclic $f$- contraction mappings in complete metric spaces. our results improve and extend various results in literature.
full textBest proximity points of cyclic mappings
Given A and B two subsets of a metric space, a mapping T : A∪B → A∪B is said to be cyclic if T (A) ⊆ B and T (B) ⊆ A. It is known that, if A and B are nonempty and complete and the cyclic map verifies for some k ∈ (0, 1) that d(Tx, Ty) ≤ kd(x, y) ∀ x ∈ A and y ∈ B, then A∩B 6= ∅ and the mapping T has a unique fixed point. A generalization of this situation was studied under the assumption of A ...
full textBest Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
full textCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
full textCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
full textSome Results on Fixed and Best Proximity Points of Multivalued Cyclic Self-Mappings with a Partial Order
and Applied Analysis 3 Let BP(A j ) be the set of best proximity points between A j andA j+1 ; ∀j ∈ p. Then, there is a sequence {z n } ⊂ BP(A j ); ∀j ∈ p such that the following limit exists:
full textMy Resources
Journal title
volume 7 issue 2
pages 363- 374
publication date 2016-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023